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ABSTRACT 

 

Loss aversion—the idea that losses loom larger than equivalent gains—is one of the most 

important ideas in Behavioral Economics. In an influential article published in the Journal of 

Experimental Psychology: General, Walasek and Stewart (2015) test an implication of decision 

by sampling theory: Loss aversion can disappear, and even reverse, depending on the distribution 

of gains and losses people have encountered. In this manuscript, we show that the pattern of 

results reported in Walasek and Stewart (2015) should not be taken as evidence that loss aversion 

can disappear and reverse, or that decision by sampling is the origin of loss aversion. It emerges 

because the estimates of loss aversion are computed on different lotteries in different conditions. 

In other words, the experimental paradigm violates measurement invariance, and is thus invalid. 

We show that analyzing only the subset of lotteries that are common across conditions eliminates 

the pattern of results. We note that other recently published articles use similar experimental 

designs, and we discuss general implications for empirical examinations of utility functions.  
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INTRODUCTION 

 

Loss aversion—the idea that losses loom larger than equivalent gains —is one of the most 

important ideas in Behavioral Economics. A central feature of Prospect Theory (Kahneman & 

Tversky, 1979), it has inspired fundamental and applied research in psychology, economics, and 

management. However, a growing body of research now questions whether loss aversion is 

indeed a fundamental law of human decision-making (e.g., Ert & Erev, 2013; Gal & Rucker, 

2018; Yechiam, 2018).  

Decision by sampling theory (Stewart et al., 2006) suggests that the utility of a gain is 

derived from a series of ordinal comparisons with other gains in memory, and the utility of a loss 

is similarly derived from a series of ordinal comparisons with other losses in memory. In an 

influential article published in the Journal of Experimental Psychology: General, Walasek and 

Stewart (2015; hereafter W&S) test an implication of decision by sampling theory: Loss aversion 

can disappear, and even reverse, depending on the gains and losses that participants have 

encountered. Multiple articles in high-impact journals have explored extensions and boundary 

conditions of this prediction (e.g., Alempaki et al., 2019; Bhui & Gershman, 2018; Olivola & 

Chater, 2017; Rigoli, 2019; Stewart, Reimers, & Harris, 2015; Walasek & Stewart, 2018), 

making W&S one of the most-cited articles published in JEP: General since 2015.1 

In the current paper, we show that the differences in loss aversion λ reported in W&S 

should not be taken as evidence that loss aversion can disappear and reverse, or that decision by 

sampling is the origin of loss aversion. The mistake in W&S is that the experiments conflate the 

 

1 With 118 cites, it is the 13th most-cited article since 2015 (citation metrics from Google Scholar, recovered on 

March 10th 2020) 
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treatment phase and the measurement phase. As a consequence, the estimates of loss aversion λ 

are computed on different lotteries in different conditions. 

We proceed in four steps. First, we describe the experimental paradigm and the pattern of 

results in W&S. Second, we explain why the experimental paradigm is invalid, and show that the 

differences in λ reported in W&S will emerge without decision by sampling. Third, we show that 

analyzing the subset of lotteries that are common across conditions eliminates the pattern of 

results. Fourth, we discuss the implications of our findings for past and future investigations of 

loss aversion and decision by sampling. 

 

THE EXPERIMENTAL PARADIGM IN W&S 

 

According to decision by sampling theory (Stewart et al., 2006), the (dis)utility of a gain 

(loss) is determined by its ordinal position in a set of previously encountered gains (losses). As 

such, the utility of a unit gain and the disutility of a unit loss will depend on the set of gains and 

losses that people have encountered. For instance, the difference between a $12 gain and a $20 

gain appears larger in the context of small gains (e.g., $6, $8, $10, $12, $14, $16, $18, $20) than 

in the context of large gains (e.g., $12, $16, $20, $24, $28, $32, $36, $40), and thus the utility of 

a unit gain is larger when gains are small than when the gains are large. Similarly, the difference 

between a $12 loss and a $20 loss appears larger in the context of small losses (e.g., $6, $8, $10, 

$12, $14, $16, $18, $20) than in the context of large losses (e.g., $12, $16, $20, $24, $28, $32, 

$36, $40), and thus the disutility of a unit loss is larger when losses are small than when losses 

are large. Decision by sampling therefore predicts loss aversion when gains are large and losses 

are small (because the utility of a unit gain appears relatively small and the disutility of a unit loss 

appears relatively large), but a reversal of loss aversion when gains are small and losses are large 
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(because the utility of a unit gain appears relatively large and the disutility of a unit loss appears 

relatively small).  

To test this prediction, participants in W&S make repeated decisions to either accept or 

reject lotteries with a 50:50 chance of winning versus losing different amounts. The distributions 

of the gains and losses presented to participants are manipulated between subjects. In Experiment 

1, for instance, participants are randomly assigned to one of four conditions: They make 

decisions about 64 lotteries that feature (i) small gains and small losses ($6 to $20, in increments 

of $2), (ii) large gains and large losses ($12 to $40, in increments of $4), (iii) large gains and 

small losses, (iv) or small gains and large losses.2 This experimental design is summarized in 

Table 1. 

 

 

Small gains 

($6, $8, $10, $12, 

$14, $16, $18, $20) 

Large gains 

($12, $16, $20, $24, 

$28, $32, $36, $40) 

Small losses 

($6, $8, $10, $12, 

$14, $16, $18, $20) 

Loss Neutral Loss Averse 

Large losses 

($12, $16, $20, $24, 

$28, $32, $36, $40) 

Loss Seeking Loss Neutral 

Table 1: Experimental conditions and expected pattern of results in Experiment 1 in W&S. 

Participants see all pairwise combinations of gains and losses, for a total of 64 lotteries.  

 

 

2 Throughout this manuscript, we refer to the range of gains and losses used in Experiments 1a and 1b, and we use a 

logistic choice rule (as in Experiments 1a, 1b and 2). This is done without loss of generality: Our observations and 

results remain valid regardless of the specific values of gains and losses considered, and also apply when participants 

rate (rather than choose) lotteries, as in Experiment 3 (cf. appendix). 
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The 64 decisions made by each participant are then analyzed using the following logistic 

regression:  

log (
𝑃(Accept)

1 − 𝑃(Accept)
) = 𝛽Bias + 𝛽GGain + 𝛽LLoss 

where 𝛽G reflects the utility of a unit increase in gains, 𝛽L reflects the utility of a unit increase in 

losses, and 𝛽Bias reflects the utility of accepting a lottery regardless of its gain or loss. The degree 

of loss aversion of each participant is then operationalized as 𝜆 =  
−𝛽L

𝛽G
.  

W&S report that λ = 1 when gains and losses have similar magnitudes (i.e., both small or 

both large), λ > 1 when gains are large and losses are small, and λ < 1 when gains are small and 

losses are large. See Figure 1. They take this pattern of results to suggest that loss aversion can 

disappear and reverse, and that decision by sampling is the origin of loss aversion. 
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Figure 1. Median estimates of λ obtained in each of the four experimental conditions of 

Experiment 1 (1a + 1b). We use the condition labels from W&S. Error bars are bootstrapped 

95% confidence intervals of the medians (hence the asymmetry). 

 

λ WILL DIFFER WITHOUT DECISION BY SAMPLING 

 

In W&S, the utility of a gain and the disutility of a loss are computed from participants’ 

willingness to accept different lotteries in different conditions. This experimental design is 

invalid because it violates measurement invariance. As a consequence, the null hypothesis is 

unspecified: We cannot know how λ would differ between conditions in the absence of decision 

by sampling.  
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Below, we show how various plausible decision rules that do not assume memory for 

previously seen outcomes (i.e., no decision by sampling) will produce differences in λ between 

conditions consistent with those reported in W&S.  

 

Evidence Through Simulation 

 

To demonstrate that differences in λ will emerge without memory for previously seen 

outcomes (and therefore without decision by sampling), we created 10,000 simulated 

“participants,” which we randomly assigned to the four conditions of Experiment 1 in W&S. All 

participants decided to accept or reject each of the 64 lotteries based on the value of the 

prospective gain and the value of the prospective loss offered by the lottery:  

log (
P(Accept)

1 − P(Accept)
) = U(Gain, Loss) 

We then estimated λ on those 64 simulated choices as in W&S: 

1. For each participant, we estimate a logistic regression model:  

log (
P(Accept)

1 − P(Accept)
) = 𝛽Bias + 𝛽GGain + 𝛽𝐿Loss 

2. We construct a participant-level estimate of loss aversion: 𝜆 =  
−𝛽L

𝛽G
. 

3. We remove the 5% of participants with the highest deviance, and any participant with a 

negative estimate of λ. 

4. We compare the median estimate of λ across conditions. 

 

We repeat this simulation and analysis for three different decision rules: 
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1. Log-Linear: The utility of a lottery is determined by the value of the potential gain and the 

value of the potential loss, with diminishing marginal sensitivity to the magnitudes of 

gains and losses (e.g. Kahneman & Tversky, 1979):  

U(Gain, Loss)  =  log(Gain)  −  log(Loss) 

 

2. Gain-Loss Ratio: The utility of a lottery is determined by the magnitude of the potential 

gain divided by the magnitude of the potential loss (e.g., De Langhe & Puntoni, 2014): 

U(Gain, Loss)  =  
Gain

Loss
− 1 

 

3. Discontinuous Expected Value: The utility of a lottery is determined by its expected 

value, with discontinuities at zero (reflecting that lotteries with positive, neutral and 

negative expected value feel qualitatively different; e.g., Diecidue & Van De Ven, 2008; 

Payne et al., 1980): 

U(Gain, Loss)  =  Gain −  Loss + 𝟙(Gain > Loss)  −  𝟙(Gain < Loss)  

 

Figure 2 compares the median estimates obtained on this simulated data with the 

estimates obtained on the pooled data from Experiments 1a and 1b in W&S. While simulated 

participants evaluated lotteries without memory for previously seen outcomes, and they followed 

the same decision rule across conditions, we find the same pattern of results as in W&S.  

 



10 

 

 

Figure 2. Comparison of the median estimates of λ obtained on data from W&S (circles) and 

data simulated with the three different decision rules (diamonds, squares and triangles). Error 

bars are bootstrapped 95% confidence intervals of the medians (hence the asymmetry). 

 

Evidence in Data from W&S 

 

We have shown that the differences in λ reported between conditions will emerge without 

decision by sampling. Next, we show that a similar pattern of results emerges within conditions 

(where no differences are to be expected based on decision by sampling) when λ is estimated on 

different lotteries.  

Specifically, we focus on four subsets of lotteries taken from the 20G-20L and the 40G-

40L conditions: Lotteries with small gains and small losses, lotteries with large gains and large 
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losses, lotteries with large gains and small losses, and lotteries with small gains and large losses. 

We define “small” gains (losses) as the lower four values: [$6, $8, $10, $12] in the 20L-20G 

condition, and [$12, $16, $20, $24] in the 40G-40L condition. Similarly, we define “large” gains 

(losses) as the upper four values: [$14, $16, $18, $20] in the 20G-20L, and [$28, $32, $36, $40] 

in the 40G-40L condition.  

If the results were uniquely driven by decision by sampling, then we should not find any 

differences in λ (since all participants belonged to the same condition, and thus encountered the 

same distribution of gains and losses). If, on the other hand, the results stem from analyzing 

lotteries with different outcome magnitudes, we should observe differences in λ within conditions 

similar to the differences in λ between conditions reported in W&S. 

Analyzing a smaller subset of lotteries decreases statistical power, which limits our ability 

to precisely estimate λ at the participant-level. It also increases the likelihood that a participant 

accepted (or rejected) all lotteries in the subset, which would yield a singular choice matrix, and 

exclude the participant from the analysis. For those reasons, we instead use a pooled model: 

log (
𝑃(𝐴𝑐𝑐𝑒𝑝𝑡)

1 − 𝑃(𝐴𝑐𝑐𝑒𝑝𝑡)
) = (𝛽Bias + 𝛽GGain + 𝛽LLoss) ∗ C(Subsets), 

where C(Subsets) is a vector of dummies identifying the subset of lotteries under consideration. 

We then recover the subset-level estimates 𝛽G and 𝛽L to construct subset-level estimates of 𝜆 =

 
−𝛽L

𝛽G
 .3 

 

3 This model can be estimated using frequentist techniques (using a logistic regression, in which case the 95% 

confidence intervals for 𝜆 are constructed by bootstrapping) or a Bayesian model (in which case the 95% confidence 

intervals for 𝜆 are constructed by drawing from the posterior distribution). While this pooled analysis ignores 

individual-level heterogeneity, it yields estimates of 𝜆 that closely match those reported by the authors when applied 

to the full data (see appendix for model comparison). 
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Figure 3 presents the estimates of λ for the four subsets of lotteries. We find similar 

estimates of λ for lotteries with small gains and small losses, and for lotteries with large gains and 

large losses. We find a higher estimate of λ when gains are large and losses are small, and a 

directionally lower estimate of λ when gains are small and losses are large.  
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Figure 3. Estimates of λ for four subsets of lotteries presented in the 20G-20L condition and the 

40G-40L condition of Experiments 1a and 1b. Error bars are bootstrapped 95% confidence 

intervals (hence the asymmetry). 

 

λ IS THE SAME WHEN ANALYZING COMMON LOTTERIES 

 

To ensure that parameters are estimated on lotteries with similar outcome magnitudes, we 

can restrict the analysis to the subset of lotteries that are common across conditions. In 

Experiments 1a and 1b, for instance, 9 lotteries (out of 64) were shown to all participants 

regardless of their condition. Again, because analyzing a smaller subset of lotteries limits our 

ability to estimate λ at the participant-level, we estimate a pooled model: 

log (
𝑃(𝐴𝑐𝑐𝑒𝑝𝑡)

1 − 𝑃(𝐴𝑐𝑐𝑒𝑝𝑡)
) = (𝛽Bias + 𝛽GGain + 𝛽LLoss) ∗ C(Condition) 

where C(Condition) is a vector of dummies identifying the experimental conditions. We then 

recover the condition-level 𝛽G and 𝛽L to construct condition-level estimates of 𝜆. As mentioned 

earlier, restricting the analysis to a small subset of lotteries comes at a cost in terms of statistical 

power. To assess the impact of this decrease in statistical power, we also estimate the same model 

for subsets of 9 lotteries picked at random for each participant. 

Figure 4 compares the original λ estimates to the ones obtained for the 9 common 

lotteries, and for the 9 random lotteries. When considering the subset of lotteries that are common 

across conditions, we do not find evidence for decision by sampling: Estimates of λ are not 

statistically different from each other, and the confidence intervals of our estimates (while wide) 

do not contain the original estimates of λ reported in W&S (conditions 20G-40L and 40G-20L). 

Finally, for the 9 lotteries that were selected at random for each participant, estimates of λ were 
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consistent with those reported in W&S. This suggests that the non-significant differences in λ for 

the common lotteries cannot be attributed to a drop in statistical power alone. 
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Figure 4. Estimates of λ for all lotteries (circles), random subsets of 9 lotteries (squares), and 

common lotteries (diamonds). Error bars are bootstrapped 95% confidence intervals (hence the 

asymmetry). 

 

GENERAL DISCUSSION 

 

Our analyses suggest that W&S should not be taken as evidence that loss aversion can 

disappear and reverse, or that decision by sampling is the origin of loss aversion. The differences 

in λ emerge because λ is computed on different lotteries in different conditions. We demonstrated 

that these differences will emerge without decision by sampling, and that there are no differences 

when λ is computed on similar lotteries in different conditions. 

 

Implication for Tests of Decision by Sampling Theory 

 

We highlight that other recently published papers make a similar error. On the topic of 

loss aversion, a recent article in Journal of Experimental Psychology: Learning, Memory, and 

Cognition reports that the skewness of gains and losses encountered in the environment shape 

loss aversion (Walasek & Stewart, 2018). However, loss aversion is again estimated on different 

lotteries in different conditions.  

More generally, a recent article in Management Science reports that the shapes of utility 

and probability weighting functions are influenced by the distribution of outcomes that people 

have encountered in the environment (Stewart et al., 2015). However, utility function parameters 

are again estimated on different outcomes in different conditions. A “quasi-adversarial 
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collaboration” by Alempaki and colleagues (2019) found no evidence consistent with decision by 

sampling after re-analyzing the gambles that are common across conditions.  

It is important to emphasize that more advanced statistical modeling is not an antidote to 

violations of measurement invariance in experiments. In the same way that one cannot determine 

whether controlling for observable characteristics of participants solves a violation of random 

assignment (e.g., Gordon et al., 2019), modeling a more complex utility function may or may not 

solve a violation of measurement invariance. It is a problem of experimental design, not one of 

statistical analysis. 

Finally, we highlight that even if λ had been estimated on similar lotteries across 

conditions, the experiments in W&S would not provide a sufficiently specific test of decision by 

sampling theory (i.e., that the utility of an outcome is determined by its ordinal rank in the set of 

other outcomes sampled from memory). For instance, the minimum and maximum amounts that 

participants encountered in each condition were different, so the reference point against which 

people evaluate gain amounts and loss amounts might differ across conditions. As a consequence, 

other reference-dependent models of utility (e.g., Kőszegi & Rabin, 2006; Loomes & Sugden, 

1982) would predict similar changes in λ. A discriminant test of decision by sampling should 

present a result that is not, or less parsimoniously, predicted by other models.  

 

Implication for Measurements of Utility Function Parameters 

 

Measurement invariance is not only important for making within-study comparisons. It is 

critical also for making between-study comparisons, because the utility function parameters that 

researchers obtain in any study are local estimates, contingent on the outcomes they were 

estimated on. For instance, for the three decision rules we considered in our simulation, 
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researchers will obtain higher estimates of loss aversion if they present lotteries with large gains 

and small losses (as in Tom et al., 2007; or Tversky & Kahneman, 1992), and lower estimates if 

they present lotteries with gains and losses of similar magnitudes, or lotteries with small gains 

and large losses.  

This has implications for how to interpret meta-analyses of utility function parameters 

(e.g., Kühberger et al., 1999; Neumann & Böckenholt, 2014; Walasek et al., 2018). First, a meta-

analysis that reveals significant heterogeneity across studies may be taken as evidence of hidden 

moderators (e.g., cultural differences), while it may in fact reflect that parameters are estimated 

on different outcomes in different studies. Second, meta-analytical averages of utility function 

parameters may not be informative. Even if meta-analyses included a broad set of studies 

spanning all reasonable outcomes, the average of the local parameter estimates found across 

studies may not converge to the true parameter value (i.e., the one that would be found in a single 

study including all reasonable outcomes). Moreover, the meta-analytical average would not allow 

making good predictions for how people might behave in a specific context.  

 

DATA AND METHODS 

 

The code and files needed to reproduce all the analyses reported in this manuscript have been 

stored on an OSF repository. 

 

  

https://osf.io/67ng8/
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APPENDIX 

 

Validation of the Pooled Model 

 

Table 2 compares the estimates obtained from the individual-level approach (as described 

in W&S) to the estimates obtained from the pooled model that we propose (estimated by 

inferential and Bayesian methods). Our results closely match the original results.4 

 

Condition 

Experiments 1a + 1b Experiment 1a Experiment 1b 

Median 

𝜆𝑖 

𝜆 

Logit 

𝜆 

Bayes 

Median 

𝜆i 

𝜆 

Logit 

𝜆 

Bayes 

Median 

𝜆𝑖 

𝜆 

Logit 

𝜆 

Bayes 

20G-20L 1.00 1.04 1.04 1.01 1.06 1.06 1.01 1.03 1.03 

20G-40L 0.86 0.71 0.72 0.88 0.73 0.75 0.81 0.70 0.71 

40G-20G 1.73 1.84 1.83 1.77 1.94 1.94 1.59 1.77 1.76 

40G-40L 1.02 1.07 1.07 1.02 1.08 1.08 1.01 1.07 1.07 

Table 2. Comparison of λ obtained from the individual-level (vs. pooled) statistical model 

 

Detailed Results from Figure 4 

 

Table 3 presents the estimates reported in Figure 4 in tabular format. While the estimates 

obtained on a random subset of lotteries are close to the original estimates, we do not find 

differences between conditions when restricting the analysis to the lotteries that were presented in 

all conditions. 

 

4The data and code were recovered from Neil Stewart’s website, and are also available on our OSF repository. 

https://web.archive.org/web/20190925083408/https:/www.stewart.warwick.ac.uk/publications/loss_aversion/
https://osf.io/67ng8/
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Condition 
Experiments 1a + 1b Experiment 1a Experiment 1b 

All Random Common All Random Common All Random Common 

20G-20L 1.04 1.08 0.96 1.06 1.05 0.99 1.03 1.06 0.99 

20G-40L 0.71 0.70 0.96 0.73 0.69 1.00 0.70 0.66 1.00 

40G-20G 1.84 1.74 1.03 1.94 1.85 1.08 1.77 1.73 1.08 

40G-40L 1.07 1.10 1.01 1.08 1.14 1.03 1.07 1.08 1.03 

Table 3. Estimates of λ in Experiments 1a and 1b when computed on all lotteries, random subsets 

of nine lotteries, and the nine common lotteries. 

 

Unsuccessful Re-Analysis of Experiment 2 

 

W&S describe the stimuli of this experiment as follows: “We used two distributions for 

gains and losses, one ranging from $6 to $20 (in $2 increments) and one three times larger, 

ranging from $18 to $60 (in $6 increments). We only tested the asymmetric cases. Unlike in 

Experiments 1a and 1b, the possible gains and losses were randomly drawn and paired from the 

distributions to produce 64 pairs.” This description does not match the values of gains and losses 

we found in the data. Gains and losses appear to be drawn at random from the range [0, 19] or 

from the range [0, 59], in increments of $1. The authors confirmed that the range of values 

reported in the paper was indeed inaccurate.  

 

Re-Analysis of Experiment 3 
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Experiment 3 includes three conditions: One in which the gains (losses) are sampled from 

the [5, 20] ([10, 40]) range, one in which the gains (losses) are sampled from the [10, 40] ([5, 

20]) range, and one in which both gains and losses are sampled from the [10, 40] range. All 

possible combinations of gains and losses were considered to create 256 lotteries in each 

condition, with 36 lotteries common to all conditions. For each lottery, participants indicated 

their willingness to accept each lottery on a four-point scale anchored at “Strongly Reject” and 

“Strongly Accept.” 

Decision by sampling theory predicts that λ will be larger in the 40G-20L than in 40G-

40L. Analyzing only the lotteries that are common across conditions does not provide compelling 

support for decision by sampling (see Table 4 and Figure 5).  

 

Condition 

Experiment 3 

All Random Common 

20G-40L 0.73 0.74 0.89 

40G-40L 1.24 1.40 1.31 

40G-20L 1.86 2.24 1.12 

Table 4. Comparison of λ when computed on all lotteries, common lotteries, and random subsets 

of lotteries in Experiment 3. 
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Figure 5. Estimates of λ obtained on all lotteries (circles), a subset of 36 lotteries chosen at 

random for each participant (squares), and the subset of 36 common lotteries (diamonds). 
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