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How (Not) to Exclude Outliers: Within-Conditions Exclusions Lead to Dramatic Increases 

in False-Positive Rates 

 

ABSTRACT 

 

When researchers choose to identify and exclude outliers from their data, should they do 

so across all the data, or within experimental conditions? A survey of recent papers published in 

the Journal of Experimental Psychology: General shows that both methods are widely used, and 

common data visualization techniques suggest that outliers should be excluded at the condition-

level. However, I highlight in the present paper that removing outliers by condition runs against 

the logic of hypothesis testing, and that this practice leads to unacceptable increases in false-

positive rates. I demonstrate that this conclusion holds true across a variety of statistical tests, 

exclusion criterion and cutoffs, sample sizes, and data types, and show in simulated experiments 

that Type I error rates can be as high as 29%. I then replicate this result in the context of a recent 

paper excluding outliers per condition (Cao, Kong, and Galinsky, 2020). Using the authors’ 

original data, I show that excluding outliers at the condition level can bring the likelihood of a 

false-positive result up to 47%, and demonstrate that the exclusion strategy reported by the 

authors is associated with a 56% Type I error rate. I conclude with a list of alternatives to within-

condition exclusions. 
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INTRODUCTION 

 

Data about human behavior is noisy. Participants misread instructions, get distracted 

during the task, experience computer errors, or simply do not take a study seriously. To reduce 

noise and increase statistical power, it is common practice to identify such “nasty data” 

(McClelland, 2014) in people’s response to a task. A common example of such “aberrant 

responses” are data points that are “too extreme” to reflect to genuine responses.  

A well-defined threshold sometimes exists to distinguish between valid responses and 

extreme responses. For reaction-time to a visual stimuli (e.g., in a Stroop task), it is generally 

accepted that responses faster than 200ms indicate a human or software error (e.g., Ng & Chan, 

2012). For a muscle reaction to an auditory stimuli, the shorter threshold of 100ms is generally 

considered (Pain & Hibbs, 2007). In most circumstances however, no such threshold is available, 

and researchers instead focus on the identification of “outliers”: Data points that are 

“inconsistent” or “too far removed” from the remainder of the data (Barnett & Lewis, 1994). 

How far is “too far”? Over the years, multiple methods have been offered to establish a 

threshold between regular responses and outliers, and recent papers have summarized the 

different techniques available to researchers (Aguinis et al., 2013; Leys et al., 2019). In 

particular, three metrics are commonly used in papers to detect univariate outliers: The z-score 

(the response’s deviation from the mean, expressed in units of standard deviation), the Median 

Absolute Distance (MAD; the response’s deviation from the median; Leys et al., 2013), and the 

Inter-Quartile Range (IQR) distance (the response’s distance from the upper or lower quartile of 

the distribution). 

The latter method is commonly encountered in the context of boxplots. Since Tukey 

(1977), boxplots have been widely used by researchers to visualize and report the distribution of 
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their data. A boxplot summarizes a distribution by displaying a “box” (representing the 25th 

percentile, the median and the 75th percentile of the data) and two “whiskers” (each representing 

a 1.5 IQR band extending away from the box). Any data point that falls outside of the “whiskers” 

is flagged as an outlier, with some statistical software (e.g., SPSS) further distinguishing between 

outliers and “extreme outliers” (further than 3 IQR from the box). Figure 1 displays an example 

in the context of an experiment with two conditions: The boxplot identifies no outliers in the 

“Control” condition, and one outlier in the “Treatment” condition1.  

 

 

Figure 1. 

From this visualization, a researcher might conclude that it is acceptable (and perhaps 

desirable) to identify outliers within conditions. But is this approach correct? In an experiment 

with multiple conditions, should one identify and remove outliers across all the data, or within 

each condition? Recent papers covering the topic of outlier removal (e.g., Aguinis et al., 2013; 

Leys et al., 2019) have not broached this important question, and an inspection of the most-cited 

 
1 This “split-by-condition” boxplot is the default in SPSS, further suggesting that it is the recommended 

approach. To obtain a boxplot across all the data, researchers must instead select the “1-D Boxplot” option. 
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books and papers on the topic of univariate outliers (e.g., Barnett & Lewis, 1994; Ghosh & Vogt, 

2012; Hawkins, 1980; Miller, 1993; Osborne & Overbay, 2004; Ratcliff, 1993) reveals no 

explicit discussion of this question2.  

It is of course not appropriate to apply different exclusion rules to different conditions: 

One cannot for instance remove all responses that are more than 3 SD away from the mean in the 

“Control” condition, and all responses that are more than 2 SD away from the mean in the 

“Treatment” condition. It is transparent that doing so would introduce a systematic difference 

between the two conditions and threaten the researchers’ ability to compare them. 

But is it appropriate to apply the same exclusion rule (e.g., “any response that is more 

than 1.5 IQR lower than the 25th percentile”) within conditions taken separately? For instance, 

should a researcher, on the basis of the boxplot presented in Figure 1, exclude the “250” response 

in the “Treatment” condition, but keep the “250”, “210,” and “200” responses in the “Control” 

condition? A survey of recent papers published in the Journal of Experimental Psychology: 

General suggests that it is, indeed, an appropriate decision: Out of 31 papers published in 2019 

and 2020 that report univariate outliers exclusions, 9 of them are excluding outliers within the 

different experimental conditions3. 

In the present article however, I warn that it is in fact not appropriate to identify and 

exclude outliers within conditions. I highlight that doing so runs against the logic of null-

hypothesis significance testing, and present evidence that this practice leads to high false-positive 

rates, both in simulated and actual data. 

 
2 To the best of my knowledge, only Cousineau and Chartier (2010) and Meyvis and van Osselaer (2018) 

have offered an explicit discussion of this question. Both papers (incorrectly) suggest that outliers should be searched 

for, and excluded, within conditions. 
3 A search for all papers including the keyword “outlier” published since 2019 in JEP: General returned 43 

papers, 31 of which included a univariate exclusion. The spreadsheet summarizing this search is available on the 

OSF repository of the paper. 
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A REFRESHER ON NULL-HYPOTHESIS SIGNIFICANCE TESTING 

 

To determine if a treatment had an effect, researchers commonly engage in null-

hypothesis significance testing (NHST): They compare the observed impact of the treatment to 

what would be expected if the treatment did not have any effect (the null hypothesis). This null 

hypothesis consists of a set of assumptions about the process that generated the data, and forms 

the basis of the statistical set (Nickerson, 2000). For instance, the null hypothesis of a Student t-

test is that the two groups were independently sampled at random from a common normal 

distribution, and therefore have equal mean. 

From these assumptions, statisticians derive the theoretical distribution of the test 

statistics under the null: The distribution of results that the statistical test would return when the 

treatment does not have any effect. The NHST procedure then compares the result observed in 

the experiment to this theoretical distribution and returns a p-value: the probability of observing a 

result at least as extreme as that of their experiment under the null hypothesis. If the p-value is 

smaller than a pre-determined threshold (typically α = .05), it is common practice to conclude 

that the null hypothesis is not an appropriate description of the observed data, and to “reject the 

null.” 

However, the p-value thus obtained is only valid if the structure of the data matches the 

assumptions of the statistical test. When one (or several) assumptions are violated, the theoretical 

distribution of the test statistics under the null (i.e., the distribution of values that is predicted 

from the assumptions of the statistical test) will no longer match the empirical distribution of the 

test statistics under the null (i.e., the distribution of values that we will actually observe in the 
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experiment when the null hypothesis is true). The test then becomes “inexact,” and its 

conclusions may no longer be trusted.  

 Specifically, if extreme values are more frequent in the theoretical distribution than in the 

empirical distribution, the test is “too conservative”: The threshold to reject the null is too high. 

On the contrary, if extreme values are less frequent in the theoretical distribution than in the 

empirical distribution, the test becomes “too liberal”: The threshold to reject the null is too low.  

 

EXCLUDING OUTLIERS WITHIN CONDITIONS INVALIDATES NULL-

HYPOTHESIS TESTING 

 

While small deviations from the assumptions are typically inconsequential, larger 

deviations can threaten the conclusions of statistical tests. In particular, the practice of excluding 

outliers within conditions defies the logic of null-hypothesis significance testing: When 

researchers choose to exclude outliers within conditions (rather than across the data), they are 

considering that the conditions are different from each other… and have therefore implicitly 

rejected the null hypothesis. But if we have already accepted that the null hypothesis is not true, 

how can we then interpret a procedure that assumes that the null is true?  

This paradox is not simply an intellectual curiosity: When outliers are identified and 

excluded within conditions, the data-generating mechanism of the experiment changes, and the 

assumptions of statistical tests are automatically violated. To illustrate the consequences of this 

violation, consider a simple two-cells experiment first: A team of researchers will elicit a single 

response from 200 participants, randomly assigned to a “Control” condition or a “Treatment” 

condition. The researchers are unaware of it, but the treatment does not have any effect: The 

response for all participants is drawn from the same log-normal distribution.  
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The researchers will compare the responses in the two conditions using a t-test, but they 

are concerned about the presence of outliers. They therefore decide to use a boxplot, and to 

exclude any participant that is flagged as an outlier prior to analysis. However, the two 

researchers disagree in how the boxplot should be used: Researcher A argues that they should 

identify and exclude outliers across all the data, while Researcher W believes that they should 

identify and exclude outliers within each condition. In light of this disagreement, they decide to 

try both strategies. 

The histograms in Figure 2 shows the results that each researcher would obtain if they 

repeated the experiment a large number of times. The dashed line on each panel displays the 

theoretical null distribution of the t-test: The results that would be expected when the 

assumptions of the t-test are met (i.e., the two samples are independently sampled at random from 

the same distribution). Since the null hypothesis is correct in this case, we should expect the 

results of the experiments to closely match this distribution. 
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Figure 2 

The histogram in the top panel shows the results that Researcher A, who is excluding 

outliers across the data, would obtain. We see that these results closely match the theoretical null 

distribution: Extreme differences between conditions are rare, such that the null hypothesis is, as 

expected, only rejected 5% of the time. This confirms that excluding outliers across the data does 

not violate the assumptions of the statistical test, and therefore maintains the Type I error at a 

nominal level. 

In contrast, we see in the bottom panel that the differences observed by Researcher W are 

larger than what the theoretical distribution would predict. Differences that the theoretical null 

distribution would consider extremely unlikely are, in fact, relatively common when the outliers 
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are excluded within conditions. This translates into a Type I error rate that is grossly inflated: 

Researcher W would incorrectly reject the null 22% of the time. 

This result has an intuitive explanation. A key assumption of the null hypothesis of the t-

test (and of almost all NHST procedures) is that the samples are drawn from a common 

distribution. This assumption is violated once outliers are excluded within conditions: Each of the 

samples was submitted to a different data transformation that amplified any pre-existing 

difference between them.  

 

Figure 3. 

Figure 3 illustrates this amplification of small differences. The two groups are drawn from 

the same distribution but, by chance, the mean of the “Control” condition is slightly lower than 
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the mean of the “Treatment” condition. Because of this minute difference, the same high values 

that are considered outliers (red dots) in the “Control” condition are not considered as such in the 

“Treatment” condition. As a consequence, the difference between the two conditions will become 

larger after exclusions. Since the t-test that compares the two conditions does not “know” that 

this procedure was applied to the data, it underestimates the magnitude of the differences that can 

be observed under the null, and will reject the null more often than it should. We see that a 

difference that was originally considered consistent with the null (p = .514) becomes a highly 

significant result (p = .001) once outliers are excluded within conditions. 

 

QUANTIFYING THE PROBLEM IN SIMULATED DATA  

 

This result is not specific to the t-test, or to this particular experiment: When outlier 

exclusions are not blind to experimental conditions, any statistical procedure that does not 

account for this exclusion procedure will yield invalid conclusions. In support of this claim, I 

report in this section the results of simulated experiments showing that the inflation of false-

positive rates is observed across a variety of statistical tests, data types, sample sizes, and 

exclusion criteria.  

I considered 243 (35) different experimental setups, obtained by orthogonally crossing 

three possible distribution of responses (a normal distribution, a normal distribution with 

outliers4, and a log-normal distribution), three possible samples sizes (50, 100 or 250 

observations per condition), three possible methods (z-score, IQR, and Median Absolute 

Difference) and three possible cutoffs (1.5, 2 or 3 times the z-score/IQR distance/Median 

 
4 This distribution simulates the presence of large outliers by sampling from a standard normal 𝒩(0, 1) with 

95% probability or from 𝒩(5, 1) with 5% probability. 
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Absolute Difference) for excluding outliers, and three different statistical tests: A parametric test 

of differences in means (Welsch’s t-test), a non-parametric test of differences in central 

tendencies (Mann-Whitney’s U), and a non-parametric test of differences in distribution shapes 

(the Kolmogorov-Smirnov test)5. 

To obtain a smooth distribution of the potential outcomes, I generated 10,000 simulated 

experiments in each of those 243 different setups, for a total of 2,430,000 simulated experiments. 

In each experiment, I draw two samples at random from the same population (such that the null 

hypothesis is true), and observe the p-value of the differences between the two samples under 

three different outlier exclusion strategies: 1. No exclusions, 2. Exclusions across the data, 3. 

Exclusions within each condition. For conciseness, I only present the results by exclusion rules 

and cutoffs in Figure 4 below. The full breakdown of results (by sample size, data type, statistical 

test, exclusion rules, and exclusion cutoffs) is reported on the OSF repository of the paper. 

 
5 These three statistical tests cover the majority of the NHST procedures that are applied to continuous 

univariate data. For instance, the z-test is the asymptotic equivalent to the t-test when N is large, the F-test of an 

ANOVA is the k-samples analog to the t-test, the Kruskal-Wallis test is the k-samples analog to the Mann-Whitney 

test… 

https://osf.io/3tz76/?view_only=a1dea38a3a5b407d8e1c93fad92dcec6
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Figure 4. 

Figure 4 presents the survival curves of the tests: The fraction of tests that were 

significant (on the y-axis) at a given significance threshold (on the x-axis), under different outlier 

exclusion cutoffs (panels) and different outlier exclusion strategies (lines). If the assumptions of 

the statistical procedure are not violated, we should observe nominal false-positives rate: We 

should see that 5% of tests are significant at α = .05, that 1% are significant at α = .01, and that 

.1% are significant at α = .001. We indeed see this pattern when no outliers are excluded (blue) 

and when the outliers are excluded across the data (orange), which confirms that those practices 

do not violate the assumptions of the statistical tests. 



14 

 

In contrast, we observe an increase in false-positive rates when applying the exclusion 

cutoff within conditions (green line). The simulations show that the increase is systematic and 

serious, and that it varies significantly across exclusion cutoffs: The most favorable case shows a 

20% increase in the false-positive rate (from 5% to 6%), and the least favorable case shows a 

400% increase (from 5% to 20%). In general, we see that the less stringent the cutoff, the more 

serious the inflation in false-positive rates: Lower cutoffs increase the number of values excluded 

within each condition, which further amplifies the original differences between the two samples.  

The full breakdown of results (reported on the OSF repository of the paper) reveals 

significant heterogeneity in the severity of the issue across data types and statistical tests. In 

particular, the problem appears to be most severe in the presence of parametric tests (i.e., 

Welsch’s t-test) applied to skewed data (i.e., the log-normal distribution), with Type I error rates 

always higher than 10%, and as high as 29%. It is a concerning result: Outliers are most 

frequently excluded in the context of over-dispersed data (e.g., reaction times, willingness-to-pay, 

sum-scores…), and parametric tests are more commonly used than their non-parametric 

counterparts. 

 

REPLICATING THE PROBLEM IN RECENT DATA 

 

The conclusions presented so far paint a grim picture: Analysis of simulated data suggest 

that excluding outliers will magnify any minute difference between conditions, and lead to 

unacceptable Type I error rates. In the next section, I demonstrate that the inflation of false-

positive rates is not unique to simulated data, and that the problem is also present (and potentially 

more severe) in actual data collected from human participants. To do so, I propose a re-analysis 

of a recent paper: Cao, Kong, and Galinsky (2020). This paper offers an interesting case study for 
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two reasons: It is one of the most recent paper in a major psychological journal in which outliers 

were excluded within conditions, and the authors made the raw data of their paper available. 

In this paper, the authors report the result of two experiments comparing the negotiation 

outcomes (measured by Pareto efficiency) of dyads who were randomly assigned to one of three 

conditions: a “No Eating” condition, a “Separate Eating” condition, and a “Shared Eating” 

condition. The authors find in both experiments that dyads who were assigned to the “Separate 

Eating” condition have a lower Pareto efficiency than dyads who were assigned to the “Shared 

Eating” condition, and conclude that sharing a meal facilitates cooperation. In both experiments, 

the outliers are removed within conditions: Any dyad with a Pareto efficiency lower than “three 

times the interquartile range below the lower quartile" of its condition is removed from the data. 

In addition, it appears that this procedure was recursively applied to the data: After excluding the 

outliers, the same threshold is applied again within each condition, and newly identified outliers 

are removed, until no new outliers are found. This procedure, while unusual, has occasionally 

been recommended to facilitate the identification of outliers in heterogeneous data (Meyvis & 

Van Osselaer, 2018; Schwertman & de Silva, 2007; Van Selst & Jolicoeur, 1994). 
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Figure 5/ 

Having access to the authors’ raw data allows me to compare the results obtained in each 

study under different exclusion strategies (Figure 5). The upper-left panel presents the authors’ 

original results: When outliers are iteratively excluded within conditions, the difference between 

the “Separate Eating” and the “Shared Eating” condition is large and significant. However, we 

see that this difference is attenuated when only round of exclusion is performed within conditions 

(upper-left panel), and shrinks to a small, non-significant amount when outliers are excluded 

across conditions (bottom-left panel) or when no exclusions are performed (bottom-right panel). 

This descriptive analysis confirms that excluding outliers within conditions can magnify small 

differences that are originally present between conditions. 
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This analysis does not necessarily mean that the authors’ result is a false-positive (to 

reach this conclusion, one would need to know whether the null hypothesis is true). However, 

one can compute the likelihood of observing a false-positive in the context of the authors’ 

experiment. To do so, I reassign the condition labels in the data of Study 2 at random6 (so that the 

differences between conditions are truly zero in expectation), perform a t-test on the two groups, 

and check how often the Pareto efficiency of dyads in the “Separate Eating” is significantly 

different from the Pareto efficiency of dyads in the “Shared Eating” condition.

 

 
6 I focus on Study 2 because it was pre-registered, but similar results (reported on the OSF repository of the 

paper) are observed in Study 1. 
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Figure 6. 

Figure 6 replicates the Type I error inflation previously observed in simulated data (the 

exclusion criteria used by the authors, removing observations that are at least three times the 

interquartile range below the lower quartile, appears in the upper right corner). While outlier 

exclusions are not associated with higher false-positive rates when they are performed across the 

data (the orange line), the likelihood of a false-positive result increases sharply when outliers are 

excluded within conditions (the green line): It is always higher than 10%, and can be as high as 

47%. 

Finally, this figure shows that the increase is even stronger when the outliers are 

iteratively excluded within conditions (the red line). This result is not surprising: Iterated 

exclusions are causing the two conditions to diverge even further, and routinely lead to 

differences that the theoretical null distribution would consider extremely unlikely. In particular, 

the upper right panel show that the exclusion strategy and cutoff reported in the paper is 

associated with a false-positive rate of 56%, which translates into a false-positive rate of 28% for 

the directional hypothesis pre-registered by the authors.  

 

SUMMARY AND RECOMMENDATIONS 

 

A survey of the recent literature, and the common practice of splitting boxplots by 

conditions, suggest that excluding outliers within conditions is an acceptable strategy. I have 

demonstrated that this conclusion is erroneous: Excluding outliers by condition amplifies the 

small differences that are normally expected under the null, which results in inflated Type I error 

rates. This result is observed for parametric and non-parametric tests, different exclusion criteria, 

different cutoffs, different sample sizes, and in both simulated and real data. In light of these 



19 

 

results, I conclude that the practice of excluding outliers within conditions is a “questionable 

research practice” that makes false-positive far too likely (Simmons et al., 2011), and that it 

should be abandoned by researchers.  

 

What if the Pattern of Responses Does Differ Across Conditions?  

It might be tempting to justify the practice of excluding outliers within conditions by the 

observation that the conditions look different: One condition appears to have a higher mean, or a 

smaller dispersion, than the other(s). As mentioned earlier however, this justification is a 

paradox: If we assume that the pattern of responses differ across conditions, we have already 

rejected the null hypothesis, which then begs the interest of using a statistical test to compare 

them. If the researchers know that the values differ across conditions (e.g., when measuring the 

height of adults vs. children, or how testing how fast people can solve an easy vs. hard math 

puzzle), then they do not need a statistical test to compare the conditions, and can exclude 

outliers by group. However, if they want to test for the presence of a difference between the 

conditions, they cannot exclude outliers by condition and apply a regular statistical test. 

 

Can Researchers Ignore this Problem if they Apply a Stricter Alpha Level, or if they Use 

Bayesian Statistics? 

Using a stricter alpha level would not solve the issue. First, the exact impact of excluding 

outliers within conditions on false-positive rates is variable and unpredictable: In the simulations 

and in real data, the increase could be as low as 20% (from 5% to 6%), and as high as 940% 

(from 5% to 47%), depending on the type of statistical test, the rule for excluding outliers, and 

the exact structure of the data. As a consequence, it is unclear how large of a correction 

researchers should apply. Second, the stricter the alpha level, the lower the power of the test (all 
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other things being equal): Researchers should not adopt a practice that would harm their ability to 

detect true effects when better alternatives are available. 

The default estimation procedures in the Bayesian researcher toolbox (e.g., the Bayesian 

t-test; Kruschke, 2013) would also not offer a remedy. Indeed, the problem is not specific to 

NHST, and Bayesian inferences also hinges on the assumption that the data-generating 

mechanism is correctly identified (Gelman et al., 2013). For this reason, any procedure that does 

not explicitly model the per-condition exclusion (and therefore does not account for the inflation 

of differences between conditions) will also yield inaccurate results. In support of this claim, I 

present additional analysis (reported on the OSF repository of the paper) showing that when a 

Bayesian t-test is applied to null data, the highest density interval (HDI, the Bayesian counterpart 

of the confidence interval) contains zero more frequently when exclusions are performed within-

condition exclusions (vs. across the data). 

 

How Should Researchers Deal with Outliers Then? 

The simplest recommendation would be to exclude outliers across the data, and not within 

conditions. As shown in the simulations presented in this article, this practice does not cause a 

Type I error inflation. 

A second possibility would be not to exclude the outliers, and to analyze the data using 

non-parametric tests (e.g., rank-based tests, or resampling-based tests; Erceg-Hurn & Mirosevich, 

2008), or heavy-tailed Bayesian models (e.g., West, 1984), that are less sensitive to the presence 

of extreme values. 

Finally, if sample sizes are small, and if power to detect an effect is an important concern, 

researchers may consider using specific estimators developed for trimmed and winsorized groups 

(e.g., Kim, 1992; Wilcox, 2011; Wu, 2006; Yuen, 1974). These specific procedures account for 

https://osf.io/3tz76/?view_only=a1dea38a3a5b407d8e1c93fad92dcec6


21 

 

the fact that the data was transformed within conditions, and therefore maintain a nominal Type I 

error rate. However, they come at some overhead to the researcher: It is important to select the 

estimator that matches the exclusion strategy that was used (i.e., deviation from mean or median; 

removing vs. winsorizing), and the design of the experiment (between-subjects, within-subjects, 

or mixed design).  

 

What If the Experiment Design is More Complex? 

The present paper discussed the problem of by-condition exclusions in the context of 

single-factor experiments. However, the same general principle applies to make complex designs 

(e.g., factorial, or repeated-measure designs): Any outlier exclusion procedure must be blind to 

the factor(s) that researchers are interested in testing. The following examples illustrate this rule. 

Example 1: A between-subject factorial design in which participants are randomly 

assigned to solve one easy (vs. hard) math puzzle after engaging in a mindfulness (vs. relaxation) 

workshop. 

It is clear that people will take more time to solve the hard math puzzle than the easy math 

puzzle. Researchers can therefore choose not to test for the impact of puzzle difficulty, and to 

exclude outliers within the “hard puzzle” and “easy puzzle” conditions taken separately. 

However, they cannot exclude outliers within the “mindfulness” and the “relaxation” conditions 

taken separately without compromising their ability to test for an effect of the workshop type.  

Example 2: Identical design, but the researchers are only interested in the interaction 

effect between the workshop type and the difficulty of the puzzles. 

The researchers can again choose to apply a different exclusion threshold to the “hard 

puzzle” and “easy puzzle” groups. Alternatively, they can apply a different exclusion threshold to 

the “mindfulness” and “relaxation” groups (if, for instance, they expect the effect of the 
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workshop type to be larger than the effect of puzzle difficulty). However, they cannot decide to 

exclude outliers within each of the four conditions: If they did so, their exclusion procedure 

would no longer be blind to the interaction between the two factors that they want to test. 

Example 3: The same design again, but researchers are interested in all effects: The main 

effect of the workshop, the main effect of difficulty, and the two-way interaction. 

Since all factors are interesting to the researchers, they have to exclude outliers across all 

four conditions. 

Example 4: A within-subject study of reaction times: Participants are tasked, over many 

repeated trials, to find happy faces and angry faces in a crowd (Becker et al., 2011). Researchers 

want to test the hypothesis that happy faces are found faster than angry faces. 

It is appropriate to exclude outliers at the participant-level: Doing so would account for 

the between-participant heterogeneity in reaction times, and facilitate the identification of “noisy” 

trials in which the participant was distracted. However, they should not exclude outliers within 

the “happy faces” trials and the “angry faces” trials separately. 
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